Advertise
Free Compliments of our Advertisers
Sonoma County Gazette
Deadlines
Subscribe
Menu
Phytoremediation

What is Bioremediation?

Dec 29, 2017

Share:

Bioremediation can be defined as any process that uses microorganisms,fungigreen plants or their enzymes to return the natural environment altered by contaminants to its original condition. Bioremediation may be employed to attack specific soil contaminants, such as degradation of chlorinated hydrocarbons by bacteria. An example of a more general approach is the cleanup of oil spills by the addition of nitrate and/or sulfate fertilisers to facilitate the decomposition of crude oil by indigenous or exogenous bacteria.

Overview and applications

Naturally occurring bioremediation and phytoremediation have been used for centuries. For example, desalination of agricultural land by phytoextraction has a long tradition. Bioremediation technology using microorganisms was reportedly invented by George M. Robinson. He was the assistant county petroleum engineer for Santa Maria, California. During the 1960s, he spent his spare time experimenting with dirty jars and various mixes of microbes.[citation needed].

Bioremediation technologies can be generally classified as in situ orex situIn situ bioremediation involves treating the contaminated material at the site while ex situ involves the removal of the contaminated material to be treated elsewhere. Some examples of bioremediation technologies are bioventinglandfarmingbioreactorcompostingbioaugmentationrhizofiltration, and biostimulation.

Bioremediation can occur on its own (natural attenuation) or can be spurred on via the addition of fertilizers to increase the bioavailability within the medium (biostimulation). Recent advancements have also proven successful via the addition of matched microbe strains to the medium to enhance the resident microbe population's ability to break down contaminants (bioaugmentation).[1][2]

Not all contaminants, however, are easily treated by bioremediation using microorganisms. For example, heavy metals such as cadmium and lead are not readily absorbed or captured by organisms. The assimilation of metals such as mercury into the food chain may worsen matters. Phytoremediation is useful in these circumstances, because natural plants or transgenic plants are able to bioaccumulate these toxins in their above-ground parts, which are then harvested for removal[3]. The heavy metals in the harvested biomass may be further concentrated by incineration or even recycled for industrial use.

The elimination of a wide range of pollutants and wastes from the environment requires increasing our understanding of the relative importance of different pathways and regulatory networks to carbon flux in particular environments and for particular compounds and they will certainly accelerate the development of bioremediation technologies and biotransformation processes.[4]

Genetic engineering approaches

The use of genetic engineering to create organisms specifically designed for bioremediation has great potential.[5] The bacterium Deinococcus radiodurans (the most radioresistant organism known) has been modified to consume and digest toluene and ionic mercury from highly radioactive nuclear waste.[6]

Mycoremediation

Mycoremediation is a form of bioremediation, the process of using fungi to return an environment (usually soil) contaminated by pollutants to a less contaminated state. The term mycoremediation was coined by Paul Stamets and refers specifically to the use of fungal mycelia in bioremediation.

One of the primary roles of fungi in the ecosystem is decomposition, which is performed by the mycelium. The mycelium secretes extracellular enzymes andacids that break down lignin and cellulose, the two main building blocks of plant fiber. These are organic compounds composed of long chains of carbon and hydrogen, structurally similar to many organic pollutants. The key to mycoremediation is determining the right fungal species to target a specific pollutant. Certain strains have been reported to successfully degrade the nerve gases VX and sarin.

In an experiment conducted in conjunction with Thomas, a major contributor in the bioremediation industry, a plot of soil contaminated with diesel oil was inoculated with mycelia of oyster mushrooms; traditional bioremediation techniques (bacteria) were used on control plots. After four weeks, more than 95% of many of the PAH (polycyclic aromatic hydrocarbons) had been reduced to non-toxic components in the mycelial-inoculated plots. It appears that the natural microbial community participates with the fungi to break down contaminants, eventually into carbon dioxide and water. Wood-degrading fungi are particularly effective in breaking down aromatic pollutants (toxic components of petroleum), as well as chlorinated compounds (certain persistent pesticides; Battelle, 2000).

Mycofiltration is a similar or same process, using fungal mycelia to filter toxic waste and microorganisms from water in soil.

Advantages

There are a number of cost/efficiency advantages to bioremediation, which can be employed in areas that are inaccessible without excavation. For example, hydrocarbon spills (specifically, petrol spills) or certain chlorinated solvents may contaminate groundwater, and introducing the appropriate electron acceptor or electron donor amendment, as appropriate, may significantly reduce contaminant concentrations after a lag time allowing for acclimation. This is typically much less expensive than excavation followed by disposal elsewhere, incineration or otherex situ treatment strategies, and reduces or eliminates the need for "pump and treat", a common practice at sites where hydrocarbons have contaminated clean groundwater.

Monitoring bioremediation

The process of bioremediation can be monitored indirectly by measuring the Oxidation Reduction Potential or redox in soil and groundwater, together with pH, temperature, oxygen content, electron acceptor/donor concentrations, and concentration of breakdown products (e.g. carbon dioxide). This table shows the (decreasing) biological breakdown rate as function of the redox potential.

Comments:


Login to Make a Comment

Please support our sponsors:

Cloverdale Performing Arts Center - True West

May 17*, 18, 19, 25, 6 @ 7:30pm
May 20 & 27 @ 2pm
Tickets: 707-894-3222
cloverdaleperformingarts.com/earnest
TICKETS *Pay-what-you-can preview on May 17 at 7:30 pm

BeeKind of Sebastopol
Bike Partner.net Logo

Call 855-483-3732 to find out about Folding, Cargo & BionX Bikes. Perfect for a SMART Train Ride!

Fine Tree Care - Sonoma County Tree Services
Sonoma County Bicycle Shops and Groups

Sonoma County Bike Shops and Groups. Find LOCALLY-OWNED Bicycle Shops for NEW, Used and Rental Bicycles as well as REPAIR. Look for a bike-riding group that suits your needs and style.


Please use the Gazette's Guide to find LOCALLY-OWNED Garden Businesses to support Sonoma County's environmental and economic health and vitality.

Flower Shops and Florists of Sonoma County

Please support locally-owned businesses and tell them the Gazette sent you - THANK YOU!

Locally-Owned Jewelry Businesses in Sonoma County

Find Goldsmiths and Jewelers who create custom designs, offer jewelry repair, estate appraisals, and gems.